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1. Abstract

The goal of this study is to introduce the concept of a new type of
the hybrid algebra between Abelian groups and UP-algebras: UP-
modules. We introduce the concept of fuzzy UP-submodules of UP-
modules and provides properties and finds the necessary and suffi-
cient conditions for this concept. We define fuzzy sets in UP-modules
of many forms, supplying their properties and their relation to fuzzy
UP-submodules. We also define and study the fuzzy UP-submodule
generated by a set of fuzzy sets in UP-modules, as well as provide

for their properties and their relation to fuzzy UP-submodules.
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Finally, we apply the concept of fuzzy UP-ideals of UP-algebras
while providing properties and find the results of the composition and

the product between fuzzy UP-ideals and fuzzy UP-submodules.
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2. Introduction

DEFINITION 2.1 ¢ An algebra X = (X; -, 1) of type (2,0) is called a
UP-algebra, where X is a nonempty set, - is a binary operation on

X, and 1 1s a fixed element of X if it satisfies the following axioms:

(Vz,y,z € X)((y-2)-((z-y)-(z-2)) =1) (UP-1)
(Vo € X)(1 2 =) (UP-2)
(Vo € X)(z-1=1) (UP-3)
Vo,ye X)(z-y=1lyz=1=z=0y) (UP-4)
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A partial ordering < is defined on a UP-algebra X = (X; -,1) by

Ve,ye X))z <yezx-y=1). (2.1)
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In a UP-algebra X = (X;-,1), the following assertions are valid

(see?,”).
Ve € X)(z-xz=1) (2.2)
Ve,y,z€e X)(z-y=1Ly-z=1=zx-2=1) (2.3)
(Vo,y,2 € X)(z-y=1=(2-2) (2-y) = 1) (2.4)
Ve,y,ze X)(z-y=1= (y-2)-(x-2)=1) (2.5)
(Vo,y € X)(@-(y-2) =1) (2.6)

“Tampan,

>A. Tampan. “Introducing fully UP-semigroups”. In: Discuss. Math Gen. Algebra Appl. 38.2 (2018),
pp. 297-306. DOI: 10.7151 /dmgaa.1290.
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Vr,ye X)((y-z) z=1r=y- 1) (2.7)
(Vo,y € X)(z-(y-y) =1) (2.8)
(Va, 2, y,2 € X)((z-(y-2)-(z-((a-y)-(a-2))) =1) (2.9)
(Va,z,y,z € X)((((a-2)-(a-y)-z)-((x-y)-2) = 1) (2.10)
(Vz,y,z2 € X)(((z-y)-2)-(y-2) =1) (2.11)
Vo, y,z€ X)(z-y=1=z-(2-y)=1) (2.12)
(Vo,y,z € X)(((x-y)-2)-(x-(y-2)) =1) (2.13)
(Va,z,y,2 € X)((z-y)-2)-(y-(a-2)) =1) (2.14)
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EXAMPLE 2.2 “ Let U be a nonempty set and let X € P(U) where
P(U) means the power set of U. Let Px(U) ={A € P(U) | X C A}.
Define a binary operation - on Px(U) by putting A- B = BN(A'UX)
for all A, B € Px(U) where A’ means the complement of a subset A.
Then (Px(U), -, X) is a UP-algebra. Let PX(U) = {4 € P(U) |
A C X}. Define a binary operation * on P~ (U) by putting A x B =
B U (A'n X) for all A,B € PX(U). Then (PX(U),*, X) is a UP-
algebra.
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DEFINITION 2.3 A UP-algebra X = (X; -, 1) is said to be

(i) bounded if there is an element 0 € X such that 0 < z for all

x € X, that 1s,

(Ve e X)(0-x=1), (Bounded)

(ii) meet-commutative if it satisfies the identity
Ve,y e X)(x ANy=yAzx), (Meet-commutative)
where

Ve,ye X)(xANy=(y-x)-x). (Meet)
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3. Introducing UP-modules

In this section, we introduce a system of hybrid algebra between UP-
algebras and Abelian groups in a form similar to the well-known
modules. This new algebraic system is called UP-modules, which is

defined as follows.
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DEFINITION 3.1 By a left UP-module (briefly, UP-module) over a
UP-algebra X = (X; -, 1), we mean an Abelian group M = (M;+,0)
with an operation X x M — M with (z,m) — xm satisfies the fol-

lowing axioms:

Vx,y € X,Vm € M)((x ANy)m = z(ym)) (UPM-1)
(Ve € X,Vm,n € M)(x(m+n) =xzm+ xn) (UPM-2)
(Vm € M)(1m = 0) (UPM-3)
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EXAMPLE 3.2 Let A be a nonempty set and X = P(A). Then
(X;+,0) is an Abelian group with m +n = (m —n)U (n —m) for any
m,n € X. By Example 2.2, we get (X; -, () is a UP-algebra. Hence,

X 1s a UP-module over itself with xm = x N'm for all x, m € X.
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EXAMPLE 3.3 Let A be a nonempty set and X = P(A). Then
(X;+, A) is an Abelian group with m +n = (mNn)U (nUm)’ for any
m,n € X. By Example 2.2, we get (X; x, A) is a UP-algebra. Hence,

X 1s a UP-module over itself with xm = x Um for all x, m € X.
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DEFINITION 3.4 A UP-module M over X 1is said to be

(i) unitary (when X is bounded) if it satisfies the identity
(Vm € M)(0m = m), (Unitary)
(ii) separability if it satisfies the identity
(Ve € X,Vm € M)(xm = m), (Separability)
(iii) distributive if it satisfies the identity

Vx,y € X,Vm,n € M)(xm +yn = (z Ay)(m +n)).
(Distributive)
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For convenience, we define M as a UP-module M over X until fur-
ther described, where we shall let X = (X; - 1) be a UP-algebra and
M = (M;+,0) an Abelian group.
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PROPOSITION 3.5 Let x,z; € X and m,m; € M for all i €

{1,2,...,k}. Then the following properties hold.
(i) (Vz € X,¥m € M)((1 A z)m = 0),
(ii) (V2 € X)(20 = 0),

(iii) (V2 € X,¥m € M)((z A 1)m = 0),

(iv) (Vo € X,¥m € M)((z A z)m = 2m),

(v) (Vz € X,¥m € M)(—zm = z(—m)),

(vi) (Vo € X,¥m,n € M)(z(m — n) = am — zn),

(vil) — (0 wimy) = 300 wi(—my).
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DEFINITION 3.6 Let N be a subgroup of M. Then N is called a
UP-submodule of M if N is a UP-module over X under the same

multiplication which is defined on X and M.

THEOREM 3.7 A nonempty subset A of M is a UP-submodule if and
onlyifa—b,xa € A forall x € X and a,b € A.
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4. Fuzzy sets in UP-modules

A fuzzy set* in a nonempty set X is defined to be a function p :
X — [0,1], where [0, 1] i1s the unit closed interval of real numbers.
We say that a fuzzy set in X is constant if it is a constant function.
We define Ox and 1x represent the constant fuzzy sets in X that map

every element of X to 0 and every element of X to 1, respectively.
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DEFINITION 4.1 A fuzzy set a in M is called a fuzzy UP-submodule

of M if the following axioms hold:

(Vm,n € M)(a(m+n) > min{a(m), a(n)}) (FUPSM-1)
(Vm € M)(a(—m) = a(m)) (FUPSM-2)
(Vo € X,Vm € M)(a(zm) > a(m)) (FUPSM-3)
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From now on, we define F(M), FS(M), and F(X) as the set of all
fuzzy sets and fuzzy UP-submodules of a UP-module M over X, and
the set of all fuzzy sets in X, respectively.

The binary relation < on F(M) is defined as follows:
(Va, 5 € F(M))(a < & (Ym € M)(a(m) < 5(m))).

The binary relation < on F'(X) is defined the same as on F'(M).
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EXAMPLE 4.2 Let X = {0,1,2,3} be a set with two binary opera-

tions - and + defined by the following tables:

101 23
00123
1100 2 2
2/0 101
310000
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Then X = (X; -,0) is a UP-algebra and X = (X;+,0) is an Abelian

group.
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Thus X is a UP-module over itself with an operation defined by the

following table:
0123

00 000
1101 01
21002 2
3101 23

Now, let ty,t; € [0, 1] be such that ¢y < ¢;. We define a fuzzy set a on

<0123)
o = .
t1 to to to

Hence, « 1s a fuzzy UP-submodule of X.

X as follows:
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THEOREM 4.3 If o € F (M) satisfies (FUPSM-3), then
(Vm € M)(a(0) > a(m)). 4.1)

THEOREM 4.4 Let o € F(M). Then a € FS(M) if and only if it
satisfies (FUPSM-3) and

(Vm,n € M)(a(m —n) > min{a(m), a(n)}). (4.2)

THEOREM 4.5 Let M be unitary and o € F(M). Then o € FS(M)
if and only if it satisfies (4.1) and

Vx,y € X,Vm,n € M)(a(xm —yn) > min{a(m),a(n)}). (4.3)
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DEFINITION 4.6 Let o € F(M). For all t € [0, 1], the set
Ula;t) ={m e M | a(m) >t}

is called an upper t-level subset of a.

THEOREM 4.7 Let « € F(M). Then o € FS(M) if and only if for
all t € [0,1],0 # U(«;t) is a UP-submodule of M.
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5. Some properties of fuzzy sets in UP-modules

DEFINITION S.1 Let k € N a,a; € F(M) forall i € {1,2,...,k},
and r € X. We define fuzzy sets Zle a;, —a, and xa in M as fol-
lows:
k
’?
(vm e M)(()_ai)(m)=sup {minf{ai(a;)}})
i=1 m=a

(Vm € M)((—a)(m) = a(=m))
(Ym € M)((za)(m) = sup {a(n)})

m=xn
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DEFINITION 5.2 For all i € {1,2,...,k},a; € F(M) is said to have
the same tip if «;(0) = «;(0) for all 4,5 € {1,2,...,k}.
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PROPOSITION 5.3 Let a;, o, B,y € F(M) forall i € {1,2,...

Then the following statements hold:
(i) (1)(0) > a(m) for all m € M,
(ii) if M is unitary, then O = a,
(iii) if « < B, then xa < zf3 for all x € X,
(iv) if M is unitary and O < 08, then xa < xS for all x € X,
(v) (x ANy)a = z(ya) forall z,y € X,
(i) ifa; < Biforalli € {1,2,...,k}, then 3% a; <32 B,

(vil) a(m) < (za)(zm) forall x € X and m € M,
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(viii) (Vx € X)(a(m) < ~(xm) for allm € M if and only if ra < ),
(ix) if a; € FS(M) and has the same tip for all i € {1,2,... k}, then
a; < Zle Qjy

(x) (za + yB)(xm + yn) > min{a(m), B(n)} for all z,y € X and
m,n € M,

(xi) (za + yB)(xm — yn) > min{a(m), B(—n)} for all x,y € X and
m,n € M, in particular, if (FUPSM-2) holds, then (xa+y3)(xm—
yn) > min{a(m), B(n)} for all x,y € X and m,n € M,
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(xii) if v > za+ypB for x,y € X, then y(xm —yn) > min{a(m), B(—n)}
forall m,n € M, in particular, if (FUPSM-2) holds, then v(zm —
yn) > min{a(m), B(n)} for all m,n € M.
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THEOREM 5.4 If o € F'S(M), then it satisfies (FUPSM-2) and

(Vo € X)(za < a),

a+a <.

COROLLARY 3.5 Ifa € F'S(M), then

k
Zcu < Q.
i=1

(5.1)
(5.2)

(5.3)

THEOREM 5.6 Let M be unitary and o € F(M). If « satisfies

(FUPSM-2), (5.1), and (5.2), then o € FS(M

Page 31 of 55
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THEOREM 5.7 Let M be unitary and o € F(M). If « satisfies (4.1),
(FUPSM-2), and

Va,y € X)(za+ya < a), (5.4)

then o € F'S(M).
THEOREM 5.8 Let o € F'S(M). Then the following statements hold:
(i) —a € FS(M),

(ii) if M is unitary, X is meet-commutative, and x« satisfies (5.2) for

xr € X, that is, va + ra < xa, then xa € F'S(M).
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DEFINITION 5.9 Let {«; | i € A} C F(M). We define fuzzy sets

(Vicp i and | J,_, o in M as follows:

(¥m € M)(([)au)(m) = inf{ai(m)}),

1eN
ieA
(vm € M) (o) (m) = supfa(m)})

LEMMA 5.10 Let 5, «; € F(M). Then the following statements hold:
(i) if B < oy forall i € A, then B < (1,2, %

(ii) if s < B forall i € A, then | J,_, i < B.
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THEOREM 5.11 (F(M),U,N) is a complete lattice.
THEOREM 5.12 If o; € F'S(M) forall i € A, then ()., i € FS(M).

THEOREM 5.13 If a; € F(M) satisfies (FUPSM-2) and (FUPSM-3)
for all i € A, then |J,., o satisfies (FUPSM-2) and (FUPSM-3),

respectively.
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DEFINITION 5.14 Let Y be a subset of a set X. The characteristic

function of Y 1is defined as follows:

7

1 ifzeYy
Ve e X) | xv(z) =<

0 otherwise

\

In particular, yy = Ox and yy = 1x.
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DEFINITION 5.15 Let a be an element of a set X and ¢ € [0, 1]. The

fuzzy point a; in X 1s defined as follows:

)
t ifz=a
(\V/.CC < X) at(ar) = 4
0 otherwise

\
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6. Fuzzy UP-submodule generated by a set

In this section, we define and study the fuzzy UP-submodule gener-
ated by a set of fuzzy sets in UP-modules, as well as provide for their

properties and their relation to fuzzy UP-submodules.
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DEFINITION 6.1 Let A C F(M). The intersection of all fuzzy
UP-submodules of M greater than all fuzzy sets in A is called the
fuzzy UP-submodule generated by A, denoted by (A). By Theo-
rem 5.12, we get (A) is the least fuzzy UP-submodule of M greater
than all fuzzy sets in A. If A = {ay,9,...,a;}, then we write
(A) = (a1, aa,...,ar). If Ais finite and o = (A), then we say that «
is finitely generated. In particular, if o« = (o), then we say that « is

cyclic.
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DEFINITION 6.2 Let N be a subset of M. We define a subset [N] of M as

follows:
IN]={m &€ M | m =xn forsome z € X and n € N}.

LEMMA 6.3 Let N be a subset of M. Then
(i) if M is unitary, then N C [N],
(ii) if N is a UP-submodule of M, then [N] C N,
(iii) if M is unitary and N is a UP-submodule of M, then N = [N].
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LEMMA 6.4 Let o, 3 € F(M). Then

(i) if e satisfies (FUPSM-1), then U(«; s)+ U (o, t) C U(a; min{s, t}) for
all s,t € [0,1],

(ii) if a satisfies (FUPSM-1) and (FUPSM-3), then [U(«; s)| + [U(a; t)] C
U(c; min{s,t}) forall s,t € [0, 1],

(iii) if « < B, then U(c; t) C U(B;t) forall t € [0, 1],

(iv) if a < B and f satisfies (FUPSM-3), then [U(«;t)] C U(S;t) for all
t €10,1].
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COROLLARY 6.5 Let M be unitary and o, 5 € F(M). Then

(i) if « satisfies (FUPSM-1), then U(«; s) + U(a;t) C U(a; min{s, t}) C
[U(a; min{s, t})] for all s,t € [0, 1],

(i) if « satisfies (FUPSM-1) and (FUPSM-3), then U(ca; s) + U(a;t) C
U(a; s)] + [U(;t)] € U(a;min{s,t}) C [U(a; minds,t})] for all
s, t €[0,1],

(iii) if « < B, then U(a; t) C U(B;t) C [U(B;t)] forall t € [0, 1],

(iv) if « < B and B satisfies (FUPSM-3), then U(a;t) C [U(a;t)] C
U(B:t) C [U(B;t)] forall t  [0,1].
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LEMMA 6.6 If o € F(M) satisfies (FUPSM-3), then

(Ve € X)(sup{t € [0,1] | zm € U(a;t)} > sup{t € [0,1] | m € U(a;t)}).
(6.1)

DEFINITION 6.7 Let f € F(X) and 8 € F(M). The composition f o 3
and the product {3 of f and [ are defined as follows:

(Vm € M)((f o B)(m) = sup {min{f(z), 5(n)}}),

m=xn

(Ym e M)((fB)(m) = sup  {min{f(z1),..., f(zx), B(m1), ..., B(mr)}

k
M=y ;4 Tim;

From Definition 6.7, we know that

(Vf e F(X),v8 € F(M))(f o < fB). (6.2)
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THEOREM 6.8 Let A ={a; |i € I} C F'S(M). Then

(i) if U,c; cu satisfies (FUPSM-1), then

(Vm € M)({A)(m) = sup{t € [0,1] | m € U(| Ju:1)}),

iel
(i) if M is separability, then a; = 1x o a; foralla € M and t € |0, 1],
(111) <Ot> = OthI’ allt € [O, 1],

(iv) if M is separability, then | J, . (1x oa;) < aforall « € F(M).

ar <o
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THEOREM 6.9 Let A = {a; | i € {1,2,...,k}} C FS(M) with the

same tip. Then Ule a; < Zle «;. Moreover, if Zle «; is a fuzzy UP-

submodule of M, then (J!_, ;) = 27, a.

THEOREM 6.10 Let o, B,y € F(M). If a satisfies (FUPSM-1), then

an(B+7)z(@np)+(any).
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7. Fuzzy UP-ideals of UP-algebras

DEFINITION 7.1 ¢ A fuzzy set f in X is called a fuzzy UP-ideal of

X 1f it satisfies the following properties:

(Ve e X)(f(1) = f(x)), (7.1)
(Va,y,2 € X)(f(x-2) 2 min{f(z-(y-2)), fy)}).  (7.2)

We define F'1(X) as the set of all fuzzy UP-ideals of X.
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PROPOSITION 7.2 If f € FI(X), then

(Vz,y € X)(f(x Ay) = max{f(x), f(y)}) (7.3)

DEFINITION 7.3 An o € F(M) is said to be increasing if it satisfies

the identity
(Vm,n € M)(a(m+n) > max{a(m),a(n)}). (Increasing)

We know that every increasing fuzzy set in a UP-module satisfies

(FUPSM-1).
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LEMMA 74 If o € F(M) satisfies (FUPSM-3) and is increasing,

then

(Vm € M)(a(m) = a(0)). (7.4)
THEOREM 7.5 If M is distributive, f € FI(X), and € F(M) is
increasing, then f o (8 is increasing, that is, it satisfies (FUPSM-1).

THEOREM 7.6 If f € FI(X) and p € F(M) satisfies (FUPSM-2),
then f o (8 satisfies (FUPSM-2) and (FUPSM-3).

THEOREM 7.7 If M is distributive, f € FI(X), and € F(M) is
increasing and satisfies (FUPSM-2), then f o € FS(M).
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THEOREM 7.8 If M is distributive, f € FI(X), and € F(M) is

increasing, then (3 is increasing, that is, it satisfies (FUPSM-1).

THEOREM 7.9 1If f € FI(X) and p € F(M) satisfies (FUPSM-2),
then f( satisfies (FUPSM-2) and (FUPSM-3).

THEOREM 7.10 If M is distributive, f € FI(X), and 5 € F(M) is
increasing and satisfies (FUPSM-2), then fp3 € F.S(M).

Page 48 of 55



GROUP FOR YOUNG ALGEBRAISTS IN UNIVERSITY OF PHAYAG

PROPOSITION 7.11 Let f,g € F(X) and o, € F(M), where 3
satisfies (FUPSM-1). Then f o o < §if and only if fa < §.

PROPOSITION 7.12 Let f,g € F(X)and o, 8 € F(M). Then
(i) ifa < B, then foa < foBand fa < B,

(ii) if f < g, then fo B < goBand [ < gp.

Page 49 of 55



GROUP FOR YOUNG ALGEBRAISTS IN UNIVERSITY OF PHAYAD
LEMMA 713 Let s, 2, f € F(X) and as,a:, 5 € F(M). Then
(1) f © aminfrsy < (foas) N (foa),
(i1) famingrsy < (fas) N (fay),
(i) Zuingr.sy © B < (250 8) N (210 B),
(iV) Zuinfr.s} B < (2s8) N (2:0).
LEMMA 7.14 Let f € F(X) and a;,bs, 5 € F(M), where (3 satisfies

(FUPSM-1). If foa; < fand f obs < j3, then

(Vo € X)((f o (a+ Dhminfrsp) (2(a +0)) < Blz(a+D)).  (7.5)
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LEMMA 715 Let f € F(X) and a;,bs, B € F(M), where (3 satisfies
(FUPSM-1) and (FUPSM-2). If f oa; < S and f o by < 3, then

(V€ X)((f © (a = buingrsp)(@(a =) < Blala—1).  (7.6)
PROPOSITION 7.16 Let f € FI(X) and a; € F(M). Then

(Va,y € X)(f o (za))(y(za)) < (f o a)(y(za)). (7.7)

LEMMA 717 Let z; € F(X) and o« € F(M). If « satisfies
(FUPSM-3), then

(1, 0 @)(0) < (z; 0 )(0). (7.8)
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LEMMA 7.18 Let f € F(X) and a; € F(M). If f satisfies (7.1), then

(f00:)(0) < (f 0ar)(0). (7.9)

LEMMA 7.19 Let f € F(X) and a;,bs, B € F(M), where (3 satisfies
(FUPSM-1). If fa; < 8 and fbs < 3, then

(Ve € X)((f(a+ O)mingrsp) (2(a + b)) < Bz(a+b))). (7.10)

LEMMA 7.20 Let f € F(X) and a;,bs, B € F(M), where (3 satisfies
(FUPSM-1) and (FUPSM-2). If fa; < B and fbs; < (3, then

(Vo € X)((f(a = bhminfrsy)(z(a — b)) < Bz(a —b))). (7.11)
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PROPOSITION 7.21 Let f € FI(X) and a; € F(M). Then

(Va,y € X)(f(za))(y(za)) < (far)(y(za)). (7.12)
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THANK YOU

for your time and attention
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